425

3,3-Diethoxypropyl-lithium: A Masked Lithium Propanal Homoenolate

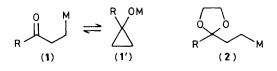
José Barluenga,* Covadonga Rubiera, José R. Fernández, and Miguel Yus

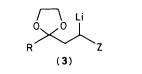
Departamento de Química Organometálica, Facultad de Química, Universidad de Oviedo, 33071-Oviedo, Spain

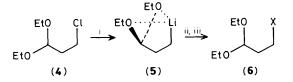
3,3-Diethoxypropyl-lithium is prepared by lithiation of the corresponding chlorinated precursor with lithium naphthalenide at -78 °C; the reaction of this masked propanal homoenolate with different electrophilic reagents [H₂O, D₂O, (PhCH₂)₂S₂, n-C₃H₇CHO, PhCHO, n-C₇H₁₅CHO, PhCH=NPh] leads to the corresponding mono- and bi-functionalized compounds.

The chemistry of homoenolate derivatives has been subject of attention recently,¹ mainly in relation to the homoaldol reaction. Although some of these intermediates are stable species [(1), $M = SnCl_3$,^{2a} $\frac{1}{2}Zn^{2b}$ or ZnI,^{2c} $TiCl_3$ ^{2d}], the derivatives of the main group metals are very unstable species and decompose spontaneously after formation, yielding metallic cyclopropanolates (1').¹ A possible way to overcome this problem is the use of a 'defensive' strategy;^{1c} thus, intermediates (2) ($M = MgBr^3$) and (3) ($Z = PhSO_2$,^{1c} NO₂,^{4a} Ph₃P⁺,^{4b} or Ph₂PO^{4c}) have been described.¹ However, the non-stabilized lithium derivative of type (2) (M = Li) is

unknown because 'it decomposed directly upon formation'.^{1b†} In this communication we describe the first preparation and

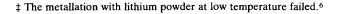

[†] While this manuscript was in preparation a paper was published⁵ which described the preparation of the intermediate (I) by reaction of the corresponding bromo derivative with t-butyl-lithium at -78 °C.

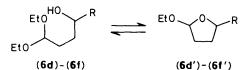



Table 1. Formation of 3,3-diethoxypropyl-lithium (5) and its reaction with electrophiles; preparation of compounds (6).

				Selected spectral data	
Producta	E+	х	% Yield ^b	¹³ C n.m.r. (δ) ^c	Mass $(m/z, \%)^d$
(6a)	H_2O	Н	80e	8.6, 15.0 (CH ₃ CH ₂ C)	$132(M^+, <1)$
(6b)	$\overline{D_2O}$	D	82°	$7.75 (t, J_{CD} 19.3 \text{ Hz}, CH_2 D)$	$133(M^+, <1)$
(6c)	$(PhCH_2)_2S_2$	PhCH ₂ S	85f	26.3, 33.3 (SCH ₂ CH ₂)	$208(M^+ - EtOH, 19)$
(6d)	n-C ₃ H ₇ CHO	n-C ₃ H ₇ CHOH	54f	29.4, 35.0, 73.2 (CH ₂ CH ₂ CHO)	$158 (M^+ - EtOH, <1)$
(6e)	PhCHO	PhCHOH	63 ^f	29.5, 37.1, 73.1 (CH ₂ CH ₂ CHO)	$192(M^+ - \text{EtOH}, 10)$
(6f)	n-C7H15CHO	n-C7H15CHOH	56 ^f	29.4, 31.6, 70.5 (CH ₂ CH ₂ CHO)	$214(M^+ - \text{EtOH}, <1)$
(6g)	PhCH=NPh	PhCHNHPh	70 ^f	30.9, 33.5, 60.8 (CH ₂ CH ₂ CHN)	313 (<i>M</i> ⁺ , 7)

^a All compounds (6) gave satisfactory spectral data (i.r., ¹H and ¹³C n.m.r., and mass spectra). ^b Based on compound (4). Yields of isolated products have not been optimized. ^c CCl₄-D₂O capillary. Recorded using a Varian CFT-80 spectrometer. ^d 70 eV. Obtained using a Hewlett-Packard 5987 spectrometer. ^e This compound was condensed *in vacuo* (0.1 mm Hg) at 20 °C. ^f Oil.


Scheme 1. Reagents and conditions: i, $Li^+C_{10}H_8^-$, -78 °C; ii, $E^+ = H_2O$, D_2O , $(PhCH_2)_2S_2$, $n-C_3H_7CHO$, PhCHO, $n-C_7H_{15}CHO$, PhCH=NPh; iii, $HCl-H_2O$.


application of the masked lithium homoenolate derived from propanal.

The reaction of 3-chloropropanal diethyl acetal (4) with lithium naphthalenide \ddagger at -78 °C led to the corresponding 3,3-diethoxypropyl-lithium (5). The *in situ* treatment of this intermediate with different electrophilic reagents (water, deuterium oxide, dibenzyl disulphide, n-butanal, benzal-dehyde, n-octanal, or benzylideneaniline) yielded the expected 3-substituted propanal diethyl acetal (6) (Scheme 1 and Table 1).

The products (6d)—(6f), derived from aldehydes, undergo intramolecular cyclization⁷ on standing at room temperature or on distillation⁸ in vacuo, affording a mixture of (6) and the cyclic acetal (6').

In a typical reaction, to a solution of 3-chloropropanal diethyl acetal (15 mmol) in tetrahydrofuran (30 ml) was added a solution of lithium naphthalenide in tetrahydrofuran (33 mmol) at -78 °C under argon and stirring was continued for 6 h at the same temperature. The corresponding electrophile

(15 mmol)§ was then added and the mixture was stirred for 2 h allowing the temperature to rise to 20 °C. The resulting mixture was hydrolysed with water, neutralised with aqueous hydrochloric acid, and extracted with diethyl ether. The organic layer was dried (Na₂SO₄) and evaporated (15 mm Hg). Naphthalene was removed *in vacuo* (0.001 mm Hg; 60 °C bath temperature) resulting in an oily residue of pure products (**6c**)—(**6g**).§

Received, 27th October 1986; Com. 1535

References

- For recent reviews see: (a) N. H. Werstiuk, *Tetrahedron*, 1983, 39, 205; (b) J. C. Stowell, *Chem. Rev.*, 1984, 84, 409; (c) D. Hoppe, *Angew. Chem., Int. Ed. Eng.*, 1984, 23, 932.
- 2 (a) I. Ryn, S. Murai, and N. Sonuda, J. Org. Chem., 1986, 51, 2391;
 (b) E. Nakamura and I. Kuwajima, Tetrahedron Lett., 1986, 27, 83;
 (c) Y. Tamaru, H. Ochiai, T. Nakamura, and Z. Yoshida, Tetrahedron Lett., 1986, 27, 955; (d) R. Goswani, J. Org. Chem., 1985, 50, 5907.
- 3 J. I. Levin and S. M. Weinreb, J. Am. Chem. Soc., 1983, 105, 1397.
- 4 (a) R. L. Crumbie, J. S. Nimitz, and H. S. Mosher, J. Org. Chem., 1983, 47, 4040; (b) E. J. Corey and K. Shimoji, J. Am. Chem. Soc., 1983, 105, 1662; (c) A. Bell, A. H. Davidson, C. Earnshaw, H. K. Norrish, R. S. Torr, and S. Warren, J. Chem. Soc., Chem. Commun., 1978, 988.
- 5 C. Neukom, D. P. Richardson, J. H. Myerson, and P. A. Bartlett, J. Am. Chem. Soc., 1986, 108, 5559.
- 6 J. Barluenga, J. Flórez, and M. Yus, J. Chem. Soc., Chem. Commun., 1982, 1153.
- 7 W. R. Roush, H. R. Gillis, and A. I. Ko, J. Am. Chem. Soc., 1982, 104, 2269.
- 8 G. Büchi and H. Wüest, J. Org. Chem., 1969, 34, 1122.

[§] When H_2O or D_2O was used as an electrophile a large excess (ca. 100 mmol) was added. In the final work up, the isolation of products (**6a**) and (**6b**) was carried out by condensation *in vacuo* (0.1 mm Hg). The purity of all compounds was checked by g.l.c. analysis (Varian Vista 6000 equipped with a Chromosorb G, 1.5% OV-101 column).